31 to 40 of 41 Results
Jupyter Notebook - 557.1 KB -
MD5: 8324b04aef79baaa64e5c07ecc02fc6a
This notebook will allow estimating past changes in precipitation amount and/or seasonality using peat δDn-C29 values compared with a wide range of δDprecip values at the CEN-17.4 site computed using an empirical approach based on modern climate data |
Python Source Code - 21.7 KB -
MD5: 51f4f64aba511a2b0c61bcf4e4a34c5a
This code will allow estimating past changes in precipitation amount and/or seasonality using peat δDn-C29 values compared with a wide range of δDprecip values at the CEN-17.4 site computed using an empirical approach based on modern climate data |
Plain Text - 1.0 KB -
MD5: dfd566a1d8d9674b85545246dd78122b
rbacon code for age/depth models |
Tabular Data - 269 B - 5 Variables, 9 Observations - UNF:6:sRazKBE7YsXHLsA1uOO5Gw==
14C dates of core BDM1-7 with topcore assigned to year 2019 |
Tabular Data - 747 B - 5 Variables, 24 Observations - UNF:6:HUgIdSVW3yTYTdxEsVPikQ==
14C dates of core CEN-17.4 with topcore assigned to year 2014 |
Tabular Data - 284 B - 5 Variables, 10 Observations - UNF:6:M6e3BLVRS8Uz3IwpqSIgig==
14C dates of core LOK5-5 with topcore assigned to year 2020 |
Plain Text - 637 B -
MD5: 2cd19f3543b6f034e0f54528b4cef90d
Contents summary |
Plain Text - 5.1 KB -
MD5: 5fcb477530e3b48365d2d4db52fb4ad9
Contents summary |
Plain Text - 2.5 KB -
MD5: f2917372e009c14f124564152f426265
File containing the reference parameters used to calibrate all the maps |
Python Source Code - 1007 B -
MD5: d12500b3c5721c815a91fe5bef2e501e
Tool to deal with memory and CPU issues |