Persistent Identifier
|
doi:10.23708/M9YGDC |
Publication Date
|
2025-09-17 |
Title
| Testing the impact of environmental variables on the predictive performance of genomic offset statistics: crop-specific metrics computed from the EWEMBI v.1 climate dataset. |
Author
| Kaczmarek, Thomas (UMR DIADE - IRD, University of Montpellier, Cirad - France) - ORCID: 0000-0001-8526-4651
Faye, Adama (Institut Sénégalais de Recherches Agricoles (ISRA), Centre National de Recherches Agronomiques (CNRA) - Sénégal) - ORCID: 0000-0002-3398-3782
Ilmi Ahmed, Aicha (UMR ESPACE-DEV - IRD, Univ.Montpellier, Univ.La Réunion, Univ.Guyane, Univ.Antilles, Univ.Perpignan - France) - ORCID: 0009-0000-5176-0999
Veltman, Margaretha (UMR DIADE - IRD, University of Montpellier, Cirad - France) - ORCID: 0000-0002-4106-4516
Thuillet, Anne-Celine (UMR DIADE - IRD, University of Montpellier, Cirad - France) - ORCID: 0000-0003-0774-2421
Scarcelli, Nora (UMR DIADE - IRD, University of Montpellier, Cirad - France) - ORCID: 0000-0003-4382-9583
Sultan, Benjamin (UMR ESPACE-DEV - IRD, Univ.Montpellier, Univ.La Réunion, Univ.Guyane, Univ.Antilles, Univ.Perpignan - France) - ORCID: 0000-0003-0416-0338
Vigouroux, Yves (UMR DIADE - IRD, University of Montpellier, Cirad - France) - ORCID: 0000-0002-8361-6040
Cubry, Philippe (UMR DIADE - IRD, University of Montpellier, Cirad - France) - ORCID: 0000-0003-1561-8949 |
Point of Contact
|
Use email button above to contact.
KACZMAREK, Thomas (UMR DIADE - IRD, University of Montpellier, Cirad - France) |
Description
| The ability of species and populations to adapt to their environment faces increasing challenges as climate change accelerates. Recent methods based on genomic offset (GO) statistics aim to quantify the risk of non-adaptation of populations to future climates. While several studies have evaluated the ability of different offset statistics to predict population (mal)adaptation, the impact of the chosen climate data —which could vary in relevance and quality— remains unexplored. To explore this question, we analyzed the case of 157 pearl millet landraces cultivated in West Africa, for which fitness proxies were measured during field trials conducted over two years. We calculated geometric and gradient forest genomic offset statistics using three different historical climate datasets: bioclimatic variables from WorldClim (v.2.1), from CHELSA (v.2.1), and a dataset specifically designed for this study derived from the EWEMBI (v.1) climate database. We provide here the climate data computed from the EWEMBI v.1 dataset, along with the code used to extract the climate crop-specific metrics. (2025-09-05) |
Subject
| Agricultural Sciences |
Keyword
| climate change
climate modelling
fitness
genetic diversity
pearl millet
West Africa |
Scientific Theme
| Bioclimatology (NumeriSud) https://uri.ird.fr/so/kos/tnu/072 |
Related Publication
| Thomas Kaczmarek, Adama Faye, Aicha Ilmi Ahmed, Margaretha A. Veltman, Anne-Céline Thuillet, Nora Scarcelli, Benjamin Sultan, Yves Vigouroux, Philippe Cubry. Genomic offset analyses: mind your climate variables. submitted to Global Change Biology Communications. UNDER REVIEW |
Notes
| This work received support from the French National Research Agency projects AfrADAPT (grant number ANR-22-CE32-0008) and PEG2 (grant number ANR-22-CE45-0033). |
Funding Information
| ANR AfrADAPT: ANR-22-CE32-0008
ANR PEG2: ANR-22-CE45-0033 |
Depositor
| KACZMAREK, Thomas |
Deposit Date
| 2025-09-05 |
Time Period
| Start Date: 1979-01-01 ; End Date: 1989-12-31 |
Data Type
| Analysis data |